欢迎光临 | 感谢支持
当前位置:创刊文档故事正文内容

数学名人传记数学故事(热门19篇)

小编整理 | 日期:2023-11-18 08:41:32

数学名人传记数学故事 第1篇

1910年11月12日,华罗庚生于江苏省金坛县。他家境贫穷,决心努力学习。上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。从此,他喜欢上了数学。

华罗庚上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学。经过自己不懈的努力,他的《苏家驹之代数的五次方程式解法不能成立的理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情。

1936年夏,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年。而此时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课。

华罗庚十分注意数学方法在工农业生产中的直接应用。他经常深入工厂进行指导,进行数学应用普及工作,并编写了科普读物。

华罗庚也为青年树立了自学成才的光辉榜样,他是一位自学成才、没有大学毕业文凭的数学家。他说:“不怕困难,刻苦学习,是我学好数学最主要的经验”,“所谓天才就是靠坚持不断的努力。”

华罗庚还是一位数学教育家,他培养了像王元、陈景润、陆启铿、杨乐、张广厚等一大批卓越数学家。为了培养青年一代,他为中学生编写了一些课外读物。

数学名人传记数学故事 第2篇

杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。

他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。

杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。他在《续古摘奇算法》中介绍了各种形式的_纵横图_及有关的构造方法,同时_垛积术_是杨辉继沈括_隙积术_后,关于高阶等差级数的'研究。杨辉在_纂类_中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的_习算纲目_是中国数学教育史上的重要文献。

数学名人传记数学故事 第3篇

法国科学家拉普拉斯(1749—1827)重新提出这个假设,并且从力学原理出发,用严密的数学推理证明了这个学说的科学性,进而带来了宇宙观的重大变革。

拉普拉斯出生在法国诺曼底的波蒙镇,小时候家境贫寒,靠邻居的帮助才完成学业。拉普拉斯有数学天才,上大学期间深受教授们的赞赏。18岁大学毕业,由著名数学家达兰贝介绍到巴黎陆军学校担任数学教授。

长期以来,科学家一直受“太阳系如何形成”,“地球何以会绕太阳运转” 这些问题的困扰,就连著名科学家牛顿也难以回答,最后只好求助神学,把运动的最终原因归于“上帝的第一推动”。拉普拉斯对宇宙形成问题进行了详细的研究,写下了《宇宙体系论》和《天体力学》两书。他认为太阳系是从一团原始星云中形成的,原始星云由于运动和质点相互吸引而形成原始火球,原始火球进一步收缩,并且由于吸引和排斥的综合作用,逐渐分化形成太阳系各行星,最后构成了现在的太阳系。他对太阳系的特点进行推算,深刻地解释了太阳系各行星的运动和轨道。他的学说逐渐为科学界所承认。

星云学说带来了宇宙观的变革,它指出宇宙是在自然界自身运动中发展产生的,将土帝驱逐出宇宙。当拿破仑问拉普拉斯为什么他的学说中没有上帝时,拉普拉斯自豪地说:“我不需要那个假设”。这成为当时无神论者藐视上帝的名言。

数学名人传记数学故事 第4篇

《数学家的故事》讲述了许多位数学家小时候的故事。其中有两篇给我印象最深,分别是《小欧拉智改羊圈》和《数学神童希帕蒂亚》。

《小欧拉智改羊圈》讲述了欧拉爸爸设计了一个长40米,宽15米的长方形羊圈,施工过程中发现围羊圈的材料少了10米。父亲在增加材料和缩小羊圈之间难以取舍时,小欧拉想出了办法,他将长方形羊圈的长缩短了15米,宽延长了10米。经过这样一改,原来长方形的羊圈变成了一个边长25米的正方形。而正方形的周长是25×4=100米,正好比原来长方形的周长(15+40)×2=110米少了10米,这样材料刚好够用。同时正方形的面积是25×25=625平方米,也比原来面积40×15=600平方米大了一些。欧拉的'方法做到了一举两得,既节省了材料,又扩大了面积。

《数学神童希帕蒂亚》讲述了女数学家希帕蒂亚10岁时,父亲带她去测量金字塔高度的故事。在一般人的眼中,测量物体的高度是件很简单、很容易的事情。可是因为希帕蒂亚的父亲是一位数学家,他要求女儿用最简单的方法来测量,这可就不容易了。小希帕蒂亚在和父亲散步时,意外的发现自己的影子和父亲的影子重合了,由此聪明的希帕蒂亚想到了运用身高和影子长度成正比例的方法间接测量金字塔的高度。因为:人的身高/人的影子长=金字塔高/金字塔影子长,所以在已知人的身高的条件下,分别测量出金字塔影子的长度和人的影子的长度,就可以很容易的计算出金字塔的实际高度了。

小欧拉和希帕蒂亚没有按常人固有的思路去思考问题,而是开动脑筋另辟蹊径,用别人意想不到的方法解决了生活中的难题。跟欧拉和希帕蒂亚比起来,我感到脸红。每当在学习中有了困难和问题时,我很少换一种方法去思考,总是直接求教于妈妈和老师。通过读欧拉和希帕蒂亚的故事,我深深体会到勤思考、善观察、多角度思考问题的重要。

同学们!当我们在学习和生活中被难题所困扰时,不仿学学欧拉和希帕蒂亚,换一种方法去思考,很可能难题就迎刃而解了。

数学名人传记数学故事 第5篇

陈景润出生在福建省福州市的闽侯镇,他的父亲陈元俊是一个邮电局的小职员。

陈景润到了上学的年龄,父母给他找了一所离家近的小学,送他去读书。在所有的学科中,他特别喜欢数学,只要遨游在代数、几何的题海中,他就能够忘却所有的烦恼。

陈景润平时少言寡语,但非常勤学好问,他总是主动向老师请教问题或借阅参考书。

一个中午,最后一节课下了,陈景润走出教室,回家吃饭。他从书包里拿出一本刚从老师那儿借来的教学书,边走边看。书上的内容像电影一样一幕幕地闪现,陈景润就像一个饥饿的人扑到面包上,大口大口地吞吃着精神的食粮。

他只顾专心致志地看书,不知不觉偏离了方向,朝着路边的小树走去。只听“哎哟”一声,他撞到了树上。

抗日战争爆发初期,陈景润刚刚升入初中,中学里的一位数学老师使陈景润的人生之路发生了根本的改变。这位老师就是曾经任清华大学航空系主任的`沈元老师。有一次,沈元老师向学生讲了个数学难题,叫“哥德巴赫猜想”,学生们“叽叽喳喳”地议论起来。

沈元老师最后又说了一句话:自然科学的皇后是数学,数学的皇冠是数论,而哥德巴赫猜想则是皇冠上的一颗明珠!

陈景润听了这句话后,内心不禁为之一震:“哥德巴赫猜想、数学皇冠上的明珠,我能摘下这颗明珠吗?”

1973年2月,陈景润的关于(1+2)简化证明的论文终于公开发表了!“陈氏定理”立即在世界数学界引起轰动,专家们给予他极高的评价。

数学名人传记数学故事 第6篇

陈景润出生在福建省福州市的闽侯镇,他的父亲陈元俊是一个邮电局的小职员。

陈景润到了上学的年龄,父母给他找了一所离家近的小学,送他去读书。在所有的学科中,他特别喜欢数学,只要遨游在代数、几何的题海中,他就能够忘却所有的烦恼。

陈景润*时少言寡语,但非常勤学好问,他总是主动向老师请教问题或借阅参考书。

一个中午,最后一节课下了,陈景润走出教室,回家吃饭。他从书包里拿出一本刚从老师那儿借来的教学书,边走边看。书上的内容像电影一样一幕幕地闪现,陈景润就像一个饥饿的人扑到面包上,大口大口地吞吃着精神的食粮。

他只顾专心致志地看书,不知不觉偏离了方向,朝着路边的小树走去。只听“哎哟”一声,他撞到了树上。

**战争爆发初期,陈景润刚刚升入初中,中学里的一位数学老师使陈景润的人生之路发生了根本的改变。这位老师就是曾经任清华大学航空系**的沈**师。有一次,沈**师向学生讲了个数学难题,叫“哥德巴赫猜想”,学生们“叽叽喳喳”地议论起来。

沈**师最后又说了一句话:自然科学的皇后是数学,数学的皇冠是数论,而哥德巴赫猜想则是皇冠上的一颗明珠!

陈景润听了这句话后,内心不禁为之一震:“哥德巴赫猜想、数学皇冠上的明珠,我能摘下这颗明珠吗?”

1973年2月,陈景润的关于(1+2)简化证明的论文终于公开发表了!“陈氏定理”立即在世界数学界引起轰动,专家们给予他极高的评价。

轻轻地告诉你:

攀登科学高峰,就像登山运动员攀登珠穆朗玛峰一样,要克服无数艰难险阻,懦夫和懒汉是不可能享受到胜利的喜悦的。

——数学名人故事参考

数学名人传记数学故事 第7篇

这个榜单的其他数学家在各个数学分支都有大量的贡献,而纳皮尔只有一个发明,但这个发明极为重要:对数。简单的说,一个数的对数让我们知道了这个数额数量级。

用现在的话来说,对数有一个“底数”,一个数的对数就是得到一个数,使得这个底数的那么多次方等于这个数。比如,以10为底数,10的对数是1,100的对数是2。因为10的1次方等于10,10的平方,就是2次方等于100。

对数之所以这么有用,是一个重要原因是由于它的一些性质:对数能把乘法变成加法,把除法变成减法。更确切的讲,两个数乘积的对数等于这两个数分别取对数在加起来。同样,两数商的对数等于两数对数的差。

在没有计算机的年代,这个性质打打降低计算的难度。对两个非常大或者非常精细的小数做乘除法要比做加减法的时间长得多。所以,如果有人要对两个大数做乘法,他可以先查对数表的得到两个数的对数,在加起来,然后再用对数表返查得到结果。

一些计算工具,比如说计算尺,利用对数来做快速计算。这种快速计算器在科学和航海中派上了打用场,我们可以非常快得做一些大数的计算。

很多用数量级来衡量计量单位也是用对数来衡量的。比如地震中的里氏震级,以及衡量声音大小的分贝。

数学名人传记数学故事 第8篇

陈景润是一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。

求学时,勤奋的陈景润在福州英华书院,正值**战争时期,清华大学航空工程系**、留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。一天,沈**师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的'现象:6= 3+ 3,8 = 5+ 3,10 = 5+ 5,12= 5+ 7,28= 5+ 23,100= 11+ 89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:“虽然我不能证明它,但是我确信这个结论是正确的。它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。”陈景润瞪着眼睛,听得入神。

从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读,因此获得了“书呆子”的雅号。兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发出了一位伟大的数学家。

数学名人传记数学故事 第9篇

商高,周朝数学家。

数学成就据《周髀算经》记载,主要有三方面:勾股定理、测量术和分数运算。

《周髀算经》中记载了这样一件事——一次周公问商高:“古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?”商高回答说:“数是根据圆和方的道理得来的,圆从方来,方又从矩来。矩是根据乘、除计算出来的。”

这里的“矩”原是指包含直角的作图工具。这说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形。《周髀算经》并有“勾股各自乘,并而开方除之”的记载,说明当时已普遍使用了勾股定理。勾股定理是中国数学家的独立发明,在中国早有记载。《周髀算经》还记载了矩的用途:“周公曰:大哉言数!请问用矩之道。商高曰:平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方。”

据此可知,当时善于用矩的商高已知道用相似关系的测量术。“环矩为圆”,即直径上的圆周角是直角的几何定理,这比西方的发现要早好几百年。

数学名人传记数学故事 第10篇

公元前570年左右,毕达哥拉斯出生在米里都附近的萨摩斯岛(今希腊东部的小岛),他最先概括“数学”和“哲学”两门学问和推算出“直角三角形斜边的平方等于两条直角边的平方和”定理。

毕达哥拉斯认为数是万物的本源,万物由数构成。

他对数充满敬畏。相信是数创造了世界,通过对数的研究能了解宇宙的奥妙。而‘一’最为基本,既是一切数的开始,又是计量一切数的单位,与理性、灵魂、本体是同一个东西。

他发现任何具体事物都有一定数量的规定性。他第一个把秤和尺介绍给希腊人。

他把音乐中一定数的比例关系构成的和谐,运用到观察天体运动中,各天体之间的距离,大小也是按照数的比例排列组合,宇宙的结构像音乐般和谐,天体像人的灵魂一样和谐有序。

一天,毕达哥拉斯应邀到朋友家做客。这位习惯观察思考的人,突然,对主人家地面上一块块漂亮的正方形大理石感兴趣。他没有心思听别人闲聊,沉思于脚下排列规则,大小如一的大理石彼此间产生的数的关系中。

他越想越兴奋,完全被自己的.思考迷住,索性蹲到地上,拿出笔尺。在4块大理石拼成的大正方上,均以每块大理石的对角线为边,画出一个新的正方形,他发现这个正方形的面积正好等于2块大理石的面积;他又以2块大理石组成的矩形对角线为边,画成一个更大的正方形,而这个正方形正好等于5块大理石的面积。于是,毕达哥拉斯根据自己的推算得出结果:直角三角形斜边的平方等于两条直角边的平方和。

著名的毕达哥拉斯定理就这样产生了。

为了庆贺自己的发现,毕达哥拉斯用了一头公牛祭祀庙宇里的神像。

数学名人传记数学故事 第11篇

在1842年,剑桥数学教授查尔斯巴贝奇在都灵大学做了一场关于他的解析机器(第一台计算机)的设想的讲座。此后,数学家路易吉蒙博将讲座笔记转录为法语。年轻的女伯爵阿达洛夫莱斯被查尔斯惠斯通(巴贝奇的一位朋友)委托把蒙博的笔记翻译成英语。由于其在记录时富有远见的记法,她被公认为世界上第一位程序员。这份笔记在1843年被发表,洛夫莱斯在G部分增加了她个人的笔记,其中列出了一份计算伯努利数的算法。实际上,她利用了巴贝奇的理论机器,将它变成了可计算的现实。阿达洛夫莱斯为那些想要探索计算奥秘的人提供了一条路,并持续地影响着科技的发展。

尽管她们的.贡献意义深远,这三位女性数学家的发现却经常被男性数学家的贡献所遮蔽。据2015年联合国的估计,在世界上男人与女人的数量基本相同(位男性对100位女性)。由此我们受到启发,工作在数学领域的女性应该和这一领域的男性有大致相同的数量。

我们之所以没能看到这一点,有个很重要的原因,是由于我们错误地认识了女性数学家的历史贡献。考虑到现代社会中科学技术的重要地位,我们认为促进和鼓励更多的女性进入数学领域,在一个文明社会里,是大势所趋的。

数学名人传记数学故事 第12篇

十九世纪初,一个早晨,英国一家酿酒厂的老板带着他的两个儿子,来到著名科学家道尔顿的家里,恳求道尔顿教这两个孩子学习科学知识。那个年龄较小、机智活泼的孩子,名叫詹姆斯·焦耳。

道尔顿是位严格的老师。开始,他并没有给孩子们讲授物理和化学的原理,而是讲了许多高深的数学知识。

“讲这些枯燥的数学有什么用?若能讲讲那些有趣的电学实验该多好!”焦耳有些不耐烦了。

好不容易盼到了放假,焦耳和哥哥一同去旅游。他找来一匹跛马,让哥哥牵着,自己却悄悄躲在后面,用伏打电池将电流通到马身上,想要试验动物对电流的反应。结果,跛马受到电击狂跳起来,差一点出了事。

他们又划船来到青山环绕的湖上。焦耳决定试试这里的回声有多大。他在枪口里塞入大量的火药,然后扣动扳机。谁知枪声大作,“”地一声,喷出一股长长的火焰,烧光了焦耳的眉毛,还把哥哥吓得差点落进水里。

后来,他们又兴致勃勃地爬上一座高山。只见远处浓云低垂,隐约能看到闪电,然后才听到滚滚的雷声。这是怎么回事?焦耳用怀表认真记录下从闪电开始到听到雷声的时间。

开学后,焦耳把自己做的试验都告诉了老师。道尔顿笑了,说:“这些实验中,只有最后一次你做对了。”他谆谆告诫焦耳:人们只要掌握了光的速度和声的速度,就可以从看到闪电到听到雷声的时间,推断出闪电发生在相距多远的地方。

焦耳听了很惊异:“难道枯燥的数学中会藏着这么多学问?”道尔顿举了许多例子开导他,真正的科学实验是不能只观察现象的,它必须有精密的测量,并学会用数学知识从测量的数据中总结出规律。

焦耳顿开茅塞,从此,他开始注重理论学习和精密的测量了。经过这样不懈地努力,他终于成为世界闻名的物理学家。

数学名人传记数学故事 第13篇

华罗庚小时候,他的父亲开小杂货铺,家里穷得很。华罗庚一生下来就被装进一个箩筐里,顶上又盖一只箩筐。老人说这样可避邪消灾,所以给孩子起名为“罗庚”,很有些吉祥如意的意思。

华罗庚上学期间,并不是一个循规蹈矩的孩子,常常独出心裁,我行我素。而且把作业乱改一通,但这些并不能掩盖他的天资聪慧。华罗庚的.数学天才大大超过了他的同学们。他上初中二年级时,教数学课的是法国留学生王维克。有一次王老师在课堂上提出一个有趣的问题:“今有物不知其几,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”过了好半天,竟没有一个学生能回答。王老师用眼扫视全班时,大部分学生都低着头,恐怕被老师喊起来回答。只有一个学生在桌上用笔紧张地算着。过了一会儿,这个学生果然举手要求回答了。他大声说:“是二十三。”王老师问:“大家说他回答的对不对?”教室里又是一片沉寂,同学们只是惊奇地看着站起来的那个学生,他就是很不起眼的华罗庚。王老师说:“他答对了。”接着老师告诉大家,这是我国古代算学经典之作的《孙子算经》里的一道名题。

在楚汉之争中,汉王刘邦的大将韩信,还用这个方法点兵呢!西方数家尊称它为“孙子定理”。王老师一再表扬华罗庚是个好学的孩子,前途不可限量。从此,同学们对华罗庚刮目相看了。其实,这年才刚满14岁的华罗庚,根本没看过《孙子算经》。他完全是靠动脑筋,凭聪明才智计算出来的。王维克发现华罗庚是个数学天才后,不断地鼓励他、帮助他,一步一步把他领入“数学王国”。经过许多年的勤奋努力,他进了清华大学,又去了英国剑桥大学进修。华罗庚终于成了一名自学成材的大数学家,在国际上也很有影响。

数学名人传记数学故事 第14篇

泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家.他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行.他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题.他的家乡离埃及不太远,所以他常去埃及旅行.在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识.他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已.

泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等.也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的.如果是这样的`话,就要用到三角形对应边成比例这个数学定理.泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案.

泰勒斯最先证明了如下的定理:

1.圆被任一直径二等分.

2.等腰三角形的两底角相等.

3.两条直线相交,对顶角相等.

4.半圆的内接三角形,一定是直角三角形.

5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等.

这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理.相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵.后来,他还用这个定理算出了海上的船与陆地的距离.

数学名人传记数学故事 第15篇

布列斯·巴斯卡是法国著名的数学家与思想家。他在短暂的一生中,取得了多方面的成就:少年时代是个数学家,青年时代是个发明家,中年以后则以深刻的思想启迪后人。他是个天才,11岁即发表论文,16岁提出了著名的“巴斯卡六边形定理”,17岁发明了计算器,23岁测试了大气压力……但他又是个多灾多难的“病秧子”。到了晚年,甚至陷入宗教与迷信而不可自拔。

巴斯卡1623年6月19日出生于法国奥佛涅省的克勒蒙城,他的家庭是开明而富有的`,但巴斯卡的人生却是很悲惨的。他1岁时就患肺结核与软骨病,九死一生幸存下来,终身生活在病魔的阴影中。从18岁起,他几乎没有一天是快乐无忧的。正当24岁的青春韶华,他却因中风而瘫痪。肠结核、头痛症、下肢麻痹更兼神经衰弱,一起向他袭来。经过反复调养、多方锻炼,虽能倚杖而行,但再也恢复不了健康了。他的病极其复杂,象他的思想一样,时时处在神秘之中。法国医生梅特里曾概括其多种病症而命名为“巴斯卡幻象”,认为巴斯卡“一方面是伟大人物,另方面是半疯子。”

然而,巴斯卡正是在病痛的折磨下,靠坚强的意志研究数学难题而忘却了痛苦,他在疾病与天才中并驾齐驱,成为17世纪最伟大的科学家与最深刻的思想家之一。

他原本不相信命运,但后来却陷入了宗教的迷雾中了。1654年,在巴斯卡的生活史上,是个划时代的年头,他在这年写下了《罪人的皈依》一文,从而开始了心理学与神学的探索,他开始对宗教的狂热探究。1654年11月23日,巴斯卡乘马车遇险,两匹马均死于巴黎塞纳河中,而他本人却奇迹般地幸免于难。当天晚上,巴斯卡心潮澎湃,获得天启,写下了祷文:“正直的天父,这世界从不知道你,但我已知道你。愿我再不离开你。”此后,他便迁入罗雅尔修道院,终其余生,在激烈的斗争与痛苦中追求宇宙与人生的真理。

1662年6月,多病的巴斯卡又患上了剧烈的腹纹痛病,病情急剧恶化。

7月,病危症状日益显着。他的忏悔神父与他进行了一次著名的谈话,传闻巴斯卡对以往的过激言论有所悔悟。8月19日,一代天才停止了呼吸。他的面容被拓印下来,以便日后塑造雕像。两天后,他被安葬在巴黎圣艾基纳教堂。这位数学家的故事会随他的作品被世人铭记。

数学名人传记数学故事 第16篇

在二十世纪之初,著名的德国数学家大卫希尔伯特发表了***个吸引人,但却让绝大多数天才数学家也大伤脑筋的问题。其中第十问题描述为是否存在一般的算法可以判定所有的丢番图方程(整系数多项式方程)的可解性。设想,存在一个机器对于任意一个丢番图方程可以判别这个方程是否可解。数学家们常常通过简单而广泛的观察来处理大自然中无穷无尽又超乎解决能力范围的谜题。这个特殊的问题引起了伯克利数学家茱莉亚罗宾逊的兴趣。经过了几十年的研究,罗宾逊与她的同事包括马丁戴维斯与希拉里普特南合作,最终给出了一种情况,否定回答了希尔伯特第十问题。

在1970年,一位年轻的***数学家尤里马季亚谢维奇利用罗宾逊,戴维斯和普特南提供的思路解决了该问题。由于其在数论方面杰出的贡献,罗宾逊成为了杰出的数学家,那是一个最重要的数学问题之一,罗宾逊为它的解决铺*了道路。在**数学协会的一篇文章,“茱莉亚罗宾逊自传”中,她的妹妹和传记作家康斯坦斯里德写到“通常情况下,她永远不会刻意去收集自己的故事。但就她而言,她在数学上所做的一切工作都是重要的。”

数学名人传记数学故事 第17篇

**斯·亨利克·阿贝尔(1802年8月5日-1829年4月6日),挪威数学家,在很多数学领域做出了开创性的工作。他最著名的一个结果是首次完整给出了高于四次的一般代数方程没有一般形式的代数解的证明。这个问题是他那时最著名的未解决问题之一,悬疑达250多年。他也是椭圆函数领域的开拓者,阿贝尔函数的发现者。尽管阿贝尔成就极高,却在生前没有得到认可,他的生活非常贫困,死时只有27岁。

阿贝尔是十九世纪挪威出现的最伟大数学家。他的父亲是挪威克里斯蒂安桑主教区芬杜小村庄的牧师,全家生活在穷困之中。在1815年,当他进入了奥斯陆的一所_学校读书,他的数学才华便显露出来。经他的老师霍尔姆伯的引导下,他学习了不少当时的名数学家的著作,包括:牛顿、欧拉、拉格朗日及高斯等。

1820年,阿贝尔的父亲去世,照顾全家七口的重担突然交到他的肩上。虽然如此,1821年阿贝尔透过霍姆彪的补助,仍可进入奥斯陆的克里斯蒂安尼亚大学,即奥斯陆大学就读,於1822年获大学预颁学位,并由霍姆彪的资助下继续学业。

在学校里,他几乎全是自学,同时花大量时间作研究。1823年当阿贝尔的第一篇论文发表后,他的朋友便力请挪威*资助他到德国及法国进修。

这篇《一元五次方程没有代数一般解》论文,正确解决了这个几百年来的难题:即五次方程不存在代数解。后来数学上把这个结果称为阿贝尔-鲁芬尼定理。阿贝尔认为这结果很重要,便自掏腰包在当地的印刷馆印刷他的论文。因为贫穷,为了减少印刷费,他把结果紧缩成只有六页的小册子。

阿贝尔满怀信心地把这小册子寄给外国的数学家,包括德国被称为数学王子的家高斯,希望能得到一些反应。可惜文章太简洁了,没有人能看懂。高斯收到这小册子时觉得不可能用这么短的篇幅证明这个世界著名的问题----连他还没法子解决的问题,于是连拿起刀来裁开书页来看内容也懒得做,就把它扔在书堆里了。高斯错过了这篇论文,不知道这个著名的代数难题已被解破。

1826年夏天,他在巴黎造访了当时最顶尖的数学家,并且完成了一份有关超越函数的研究报告。这些工作展示出一个代数函数理论,现称为阿贝尔定理,而这定理也是後期阿贝尔积分及阿贝尔函数的理论基础。他在巴黎被冷落对待,他曾经把他的研究报告寄去科学学院,望可得到好评,但他的努力也是徒然。他在离开巴黎前染顽疾,最初只以为只是感冒,后来才知道是肺结核病。

在1828年冬天,阿贝尔的病逐渐严重起来。在他圣诞节去芬罗兰探他的未婚妻克莱利·肯姆普期间,病情便更恶化。到1829年1月时,他已知自己寿命不长,出血的症状已无法否认。直至1829年4月6日**,阿贝尔去世了。

直到阿贝尔去世前不久,人们才认识到他的价值。1828年,四名法国科学院院士**给挪威国王,请他为阿贝尔提供合适的科学研究位置,勒让德也在科学院会议上对阿贝尔大加称赞。在阿贝尔死後两天,克列尔写信说为阿贝尔成功争取於柏林大学当数学教授,可惜已经太迟,一代天才数学家已经在收到这消息前去世了。

此后荣誉和褒奖接踵而来,1830年他和卡尔·雅可比共同获得法国科学院大奖。阿贝尔在数学方面的成就是多方面的。除了五次方程之外,他还研究了更广的一类代数方程,后人发现这是具有交换的伽罗瓦群的方程。为了纪念他,后人称交换群为阿贝尔群。阿贝尔还研究过无穷级数,得到了一些判别准则以及关于幂级数求和的定理。这些工作使他成为分析学严格化的推动者。

阿贝尔和雅可比是公认的椭圆函数论的奠基者。阿贝尔发现了椭圆函数的加法定理、双周期性、并引进了椭圆积分的反演。阿贝尔这一系列工作为椭圆函数论的研究开拓了道路,并深刻地影响着其他数学分支。埃尔米特曾说:阿贝尔留下的思想可供数学家们工作150年 。

科学院秘书傅立叶读了论文的引言,然后委托勒让得和柯西负责**。柯西把稿件带回家中,究竟放在什么地方,竟记不起来了。直到两年以后阿贝尔已经去世,失踪的论文原稿才重新找到,而论文的正式发表,则迁延了12年之久。

这些迟来的荣誉对这位数学家已经没有任何意义了,这位数学天才在他短暂的一生中为数学的发展做出了巨大的贡献,虽然生活拮据,虽然怀才不遇,但是在困境中他依然坚持数学的研究。这种精神和阿贝尔的数学贡献同样珍贵。

数学名人传记数学故事 第18篇

杨辉,*南宋时期杰出的数学家和数学***。在13世纪中叶活动于苏杭一带,其著作甚多。

他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。

杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。他在《续古摘奇算法》中介绍了各种形式的_纵横图_及有关的构造方法,同时_垛积术_是杨辉继沈括_隙积术_后,关于高阶等差级数的研究。杨辉在_纂类_中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的_习算纲目_是*数学教育史上的重要文献。

数学名人传记数学故事 第19篇

唐僧师徒四人走在无边无际沙漠上,他们又饿又累,猪八戒想:如果有一顿美餐该有多好啊!孙悟空可没有八戒那么贪心,悟空只想喝一杯水就够了。孙悟空想着想着,眼前就出现了一户人家,门口桌上正好放了一杯牛奶,孙悟空连忙上前,准备把这杯牛奶喝了,可主人家却说:“大圣且慢,如果您想喝这杯奶就必须回答对一道数学题。孙悟空想,不就一道数学题吗,难不倒俺老孙。孙悟空就答应了。那位主人家出题:倒了一杯牛奶,你先喝了1/2加满水,再喝1/3,又加满水,最后把这杯饮料全喝下,问你喝牛奶和水哪个多些?为什么?

孙悟空一看,挠挠头,不一会儿功夫就算出来了,并且喝到了这杯牛奶。同学们,你知道答案吗?试试看。

公元前46年,罗马统帅儒略· 恺撒指定历法。由于他出生在7月,为了表示他伟大,决定将7月改为“儒略月”,连同所有单月都规定为31天,双月为30天。这样一年多出一天,2月是古罗马处死犯人月份,为了减少处死人数,将2月减少1天,为29天。